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Abstract 

We derive an action for gravity in the framework of non-commutative geometry by using the 
Wodzicki residue. We prove that for a Dirac operator D on an n dimensional compact Riemannian 
manifold with n > 4, n even, the Wodzicki residue Res(D -"+2) is the integral of the second 
coefficient of the heat kernel expansion of D 2. We use this result to derive a gravity action for 
commutative geometry which is the usual Einstein-Hilbert action and we also apply our results 
to a non-commutative extension which is given by the tensor product of the algebra of smooth 
functions on a manifold and a finite dimensional matrix algebra. In this case we obtain gravity 
with a cosmological constant. 
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1. Introduction 

Although General Relativity is well established as a classical theory of  gravitational 

interaction we still do not know how to describe gravity at distances of  order Planck- 

length, i.e., we do not have a theory of  gravity which is compatible with the quantum 

theory o f  the other fundamental interactions which are experimentally well understood 

in the framework of  the Standard Model.  

Since a considerable amount of  effort has been spent on this problem one may 

draw the conclusion that the mathematical concepts of  General Relativity have to be 
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changed, or more precisely, our classical geometrical concepts may not be well suited 
for the description of gravity at small distances. A promising direction seems to be 
the generalization of geometry to non-commutative geometry [ 1 ] which has been used 
by A. Connes and J. Lott [2] to derive a model for the electroweak interactions. 
This led to a new interpretation of the Higgs particle as a connection on a discrete 
space. The geometrical set-up studied in Ref. [2] is a tensor product of a compact 
Riemannian manifold and a discrete two-point space. This geometry leads to theories 
with one symmetry breaking scale. A detailed presentation of this approach can be 
found in Ref. [3]. A generalization to geometries where the discrete space has more 
than two points was performed in Ref. [4] in order to describe theories with several 
symmetry breaking scales like GUT-models. There is also an alternative approach to 
non-commutative geometry, which allows for the same geometrical picture, i.e. smooth 
manifold × discrete space, but it is not restricted to compact Riemannian space-time. 
This approach was developed in Refs. [5-7].  A comparison of both models can be 
found in Ref. [8]. 

Now it seems to be only natural to apply the concepts of non-commutative geometry 
to gravity since it is a theory of space-time geometry. A reformulation of gravity in 
this language brings us in the position to use the power of non-commutative geometry, 
which might be of some use to find a consistent quantum theory for gravity. 

A first step in this direction was made by Chamseddine et al. [9], who generalized 
the notion of cotangent space to the case where the geometry is given by a tensor 
product of a smooth manifold and a discrete two-point space. They studied a vielbein 
and a connection which are related by generalized Cartan structure equations. This led 

to gravity coupled to a scalar field. 
However, in this article we will follow a different line of approach. We shall use 

the fact that, as described by A. Connes in Ref. [ 10], the choice of a K-cycle over 
an algebra specifies the metric properties of the 'manifold' described by the algebra. 
More precisely, the (get)metric structure is encoded in the Dirac operator of a K-cycle 
[ 1,10]. It is therefore natural to expect that, in the case of classical geometry, it should 
be possible to derive the curvature tensors and in particular the Einstein-Hilbert action 
for gravity - scalar curvature times the volume element - from the data provided by the 
Dirac operator itself. This observation was at the origin of our work. For dimensionality 
reasons (curvature being homogeneous to the inverse square of a length), one naturally 
expects the classical gravity action (in dimension four) to be related to the operator 
D -2. Known properties of the heat kernel of pseudo-differential operators [ 11 ] then 
suggest naturally to define the action for gravity from the logarithmic divergent part of 
tr(D -n+2) (n is the dimension of the manifold). This approach can then be promoted 
to the realm of non-commutative geometry. 

Such ideas were expressed by A. Connes in 1993. In particular, the claim that the 
Wodzicki residue of D -n+2 leads to gravity appears in his lecture notes [ 12]. We came 
independently to the same conclusion via the attempt to understand the relation between 
the Dixmier trace to the heat kernel expansion of elliptic operators and by learning 
from Ref. [ 13] about the relevance of the Wodzicki Residue in this context. One of 
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the main purposes of the present paper is therefore to show explicitly how to relate the 
lagrangian for gravity to the logarithmic divergent part of tr(D-n+2). This is achieved 

by exploiting the heat kernel expansion of elliptic operators, see e.g. Ref. [ 11 ]. After 

we had almost finished this work - see the note at the end of the present paper - we 
learned of an independent and simultaneous calculation [ 14] (of  independent interest 

because more direct but also less general) leading, in the case of four dimensions, to 
the same result as ours. 

We start in the next section with a brief introduction to the general concepts of  

non-commutative geometry. The Dixmier trace as an operator theoretic substitute for 
integration is introduced in Section 3 and we discuss its relation to the heat kernel 

expansion. We use this as a motivation to derive a gravity action by selecting the second 

coefficient of the heat kernel expansion. The proof of our main result, namely that 
the Wodzicki residue of D -n+2, where D is a Dirac operator on an n dimensional 

compact Riemannian manifold (n even), picks out the second heat kernel coefficient 

is presented in Section 4. In Section 5 we apply our result to the usual Dirac operator 

without and with torsion. In this case we obtain the Einstein-Hilbert action. We also 

consider a simple extension to non-commutative geometry, which is given by the tensor 

product of the algebra of smooth functions on a manifold and a finite dimensional matrix 
algebra. Such algebras are used in model building [2,4] and also in Ref. [9]. For those 

geometrical set-ups we obtain a gravity action with a cosmological constant but no 

scalar field coupled to gravity and therefore our result is different from that obtained in 
Ref. [9]. We end this article with some conclusions in Section 6. 

2. Dirac-K-cycles and metric structures 

In this section we briefly review some of the main concepts of non-commutative 

geometry in order to make this article self contained and to fix our notation. For a more 

comprehensive presentation of this subject we refer to Refs. [ 1,15]. 

Let .4 be an associative unital algebra. We can construct a bigger algebra s2-4 out of 
it by associating to each element a C .,4 a symbol 8a. /2-4 is the free algebra generated 

by the symbols a, t~a, a E -4 modulo the relation 

~ ( a b )  = t~ab + arab. (2.1) 

With the definition 

~( aot~al . . .  ~ak ) := t3ao 6al . . .  6ak , (2.2) 

8 ( t a l  " "  6a t )  :=0 ,  (2.3) 

/2.4 becomes a Z-graded differential algebra with the odd differential 6 and t~ 2 ---- 0. $"2.4 
is called the universal differential envelope of . 4 .  

The next element in this formalism is a K-cycle (7-/,D) over .4 , where 7-/ is a 
Hilbert space such that there is an algebra homomorphism 
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7r: .,4 , B ( ~ ) ,  (2.4) 

where B(7-/) denotes the algebra of bounded operators acting on 7-(. D is an unbounded 

self-adjoint operator with compact resolvent such that [D, zr(a)]  is bounded for all a E 
..4. It is the triple (-4, 7-/, D)  which contains all geometric information. 

We can use D to extend 7r to an algebra homomorphism of 0 .4  by defining 

7r(a08al • • • 8ak) := 7r(a0) [D, ' r r (a l )  ] . . .  [D, qr(ak) ] . (2.5) 

However, in general 7r(/2.4) fails to be a differential algebra. In order to repair this, 

one has to divide 12.4 by the two sided Z-graded differential ideal ,7" given by 

,7 = ~D,]  "~ , ,.7 k := (kerTr) k + 6(ker~')  k-1 . (2.6) 
kEN 

Now we can define the non-commutative generalization of the de Rham algebra, 12o.4, 
as [ 19] 

12o.4 := ~ )  7r(12k.4)/Tr( ,.7 k) .  (2.7) 
kEN 

12o.4 is an Z-graded differential algebra, where the differential d is defined by 

d[~r(w)]  := [zr ( rw)]  , oJ E 12.4. (2.8) 

If  we take, for example, .4 = C°°(M), the algebra of smooth functions on a compact 

Riemannian spin manifold M, ~ as the space of square-integrable spin-sections and the 

Dirac operator D = ~, then 12o.4 is the usual de Rham algebra [ 1 ]. 

A remarkable fact is that the geodesic distance d(p, q) on such a manifold M for any 

p,q E M is encoded in the Dirac operator D (the algebra is C ( M ) ) :  

d(p,q) = suP(la(p)  - a(q) l ;  a E C(M), II [D,a] II < 1}. (2.9) 

No arcs are involved on the right hand side of this relation and therefore Eq. (2.9) can 
be taken as a definition of geodesic distance which still makes sense in situations where 

arcs cannot be defined. We use this as a motivation to construct an action which only 

depends on the choice of the Dirac operator for a K-cycle. 

3. Dixmier trace and heat kernel expansion 

In order to write down an action in the operator theoretic language we need a 
functional which replaces integration. For Yang-Mills theory the correct substitution 

is given by the Dixmier trace [ 1 ]. It is the unique extension of the usual trace to the 
class /2(1'00)(7-/) [16], which is an ideal in the algebra of bounded operators. The 
elements of this ideal are characterized by the condition that for any T E /:(1'00) (7-0 
the ordered eigenvalues Ai of ITI satisfy 

N 

1 E ~ i  < oo. (3.1) 
s u p ~  ,--o 
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On this ideal the Dixmier trace is defined as 

N-1 

Tr,~(T) = l i m  1 Z ~i" (3 .2)  
i=0 

An important result in non-commutative geometry is the trace theorem of A. Connes 
[13], which states that 

Tr,o(T) = lim (p - 1 ) ( r ( p )  , T E £(1 ,oo)(~) ,  (3.3) 
p----~l + 

with 

(r(p) = tr(TP) • (3.4) 

If  we now take a K-cycle (.,4, 7-/, D) ,  where 7-/denotes the space of square-integrable 
sections of a Clifford module I on a compact Riemannian manifold M of dimension n 

and D is a Dirac operator, i.e. a first order elliptic differential operator, then the action 

functional for Yang-Mills theory is given by 

IYM = Tr~,(O2lO]-"),  (3.5) 

where O E 020.,4 is the curvature 2-form. The role of IO]-" ~ £(1.oo) is to bring 0 2 into 

the ideal £(1'°~). Positivity, finiteness and covariance are ensured by general properties 

of the Dixmier trace. 
Let us study the trace theorem (3.3) for the Yang-Mills action (3.5) in some more 

detail. We have (assuming D ---]D[ for simplicity) 

1yM = lim (p -- n) tr(O2D -p) . (3.6) 
p-'--~n+ 

The trace, which is finite for p > n, can be rewritten as 

t o  

1 fdtO2t p/2-1 e x p ( - t D 2 )  " (3.7) (~D-P)- r(p/2----~ 
o 

For this expression we can now apply the heat kernel expansion [ 17], i.e., there is a 
unique formal solution to the heat equation 

(Dr + Ax)kt(x, y) = 0 (3.8) 

with 3x = D2x such that 

t o  

f dt 02t p/2-1 exp(-tz~x) g(x)l/4s(x) 

o 
o¢) 

= f dtoz#2-1f d"y gv/-fi-~ k,(x, yls(y), seT-t. (3.9/ 

0 

l In the algebraic language 7-/is a finitely generated projective module over .4. 
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The kernel kt has the expansion 

o o  

k,(x, y) = qt(x, y) Z tJ~j(x'  y) ' (3.10) 
j---o 

where qt(x, y) = g(x)1/4(47rt) - , /2  e x p ( - ( x  - y)Z/4t) denotes the Euclidean heat ker- 

nel of flat space ( x/g denotes the canonical density associated to the Riemannian metric 

on M) and the ~ j ' s  can be computed re.cursively. One finds [17] that 

@o(x,x) = idEnd(~), qh(x ,x )  = ~ R -  F . . . . .  (3.11) 

where R = R. idEnd(>t), R is the curvature scalar and F C End(7~) is determined by A, 
i .e .D.  

Now we can represent OZD -p by the following expansion: 

o o  o o  

02 DxP S( x ) = (4~') -n/202 y ~  f dt t (p-n) /2+j-1 
, 1  j=o o 

× J d " y ~ q ~ j ( x , y )  exp( -d2(x ,y ) /4 t ) s (y ) .  (3.12) 

If one takes the trace of this expansion and considers the limit p ~ n the first term in 
the expansion becomes singular and contributes to the residue. Therefore Eq. (3.5) can 

be written as 

IVM = f dnxx/g tr(O 2) • (3.13) 

However, if we would take the limit p ~ n - 2 the second term in the expansion would 

develop the same singularity as the first term does in the case p ~ n. If  we could pick 
out this term we would obtain an functional which contains the curvature scalar and 

hence it would be a good candidate for a gravity action. Of course, the first term is in 
the limit p --- n - 2 horribly divergent and therefore the whole procedure is ill defined. 
Thus we have to use a different tool to extract this coefficient. Fortunately there is a 

unique extension of the Dixmier trace to a larger class of pseudo-differential operators, 
the Wodzicki residue [18]. This residue will allow us to compute Res(D-n+2).  The 

Wodzicki residue was introduced in non-commutative geometry by A. Connes in Ref. 
[ 13] and used in Ref. [ 12] to derive a generalized Polyakov action where it was also 
claimed that Res(D -~+2) leads to gravity. In the following section we will show that 
for n > 4, n even, Res(D -n+z) picks out the second coefficient of the heat kernel 
expansion of D 2. 

4. Symbols of  an inverse Laplacian 

In this section we will prove a relation between the symbols of an inverse generalized 
Laplacian and some intrinsic geometric quantities. This relation will be used later to 
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build gravity actions out of generalized Dirac operators which have in common, that their 

square is a generalized Laplacian. First we shall introduce some notation and review 
briefly a few basic properties of pseudo-differential operators (see also Ref. [ 11 ] ). 

In the following M is a compact n-dimensional Riemannian manifold and g and gt 
are (complex) vector bundles of rank r and s on M. An ruth order differential operator 
L:  F ( M , E )  --~ F ( M , C  t) acting on sections of g may be written in local coordinates 
for suitable trivializations of g as 

( L u ( x ) ) i =  ( - i )  I'laija(x) O~uj(x) V i = I  . . . . .  s ,  (4.1) 

j=l lal---0 

where a = (al  . . . . .  an),  ai E N0 is a multi-index with lal = ~i"--1 ai ,  a ij is a r x s- 
matrix and a~' := a'~/ax~ ~.. .  a'~"/aXn ". Motivated by the Fourier representation (on 

R") 

u(x) = (2~r) -n/2 [ d (  e i(x'O ~t(() 
J 

R" 

(Lu) (x )  = (2zr) -n /2/dsC e i<x'¢) o-L(x, ( )  t~(s ¢:) , (4.2) 
J 

R" 

one introduces the symbol o-L(x, s c) associated to L by 

o'L(x, s c) = ~ o'S(x, s c) := a,,(x) ('~, (4.3) 
k=0 I,,I---0 

with ~: = (udx u and ( x , ( )  E T*M. The leading term O'Lm(X,~ :) is called the prin- 
cipal symbol of L. A differential operator L is called elliptic, if its principal symbol 

L O'm(X,() E F(T*M, vr*End(g)) is invertible over the open set {(x,~:)ls c ÷ 0}. A 
generalized Laplacian zi on g is a second order elliptic differential operator, such that 

; II :ll = • idEnd(e>, or equivalently z[ is given in any system of local coordinates by 
the expression 

= -g"~OuO~ + B~O, + C ,  (4.4) 

where g ~  = g"~.idF.na(Z) and B(x) ,  C(x)  E End(g) .  For later purposes it is important 
to notice here (see Ref. [ 17] ), that given any generalized Laplacian ,~ on g ,  there 
exists a connection V e on g and a section F of the bundle End(g ) ,  such that zl can 
be written as 

zl #~,, ,-,c,,-,E p E AV = --g t v ~ v ~  - F~,~Tp) + F := + F ,  (4.5) 

with F~,, the components of the Levi-Civita connection and AVu = -- t r (~Tr 'MeeVeu) 
the Laplacian corresponding to the connection ~7 e, where trace denotes contraction with 
the metric g E F(M,  TM ® TM). From differential operators one comes to pseudo- 
differential operators (gtDOs for short) by enlarging the space of symbols. An appro- 
priate symbol-space for our purposes is the space sm(u)  defined as follows: Let S m (U) 
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(m E l~, U C A n) be the space of functions o-(x,s ¢) with (x ,~)  E K x l~ n and K a 

compact subset of U, which satisfy the condition 

laTaff ~ ( x , ~ ) l  <_ c,~a(1 + I[~11) m-I~L V ( x , ~ )  ~ K × A n , (4 .6)  

where c,~# is a constant. We will consider qtDOs where the matrix entries of o'(x,~:) 
belong to SIn(U). Many of the main properties remain true when passing from differ- 

ential operators to ~DOs. Any ~DO P may be defined by a complete symbol which 

has an asymptotic expansion o'P(x,~) ~ ~-~_0o'Pm_k(x, sC), where now m can be any 

real number, and the O'm_k(x,s ¢) are matrices of smooth functions, which are still ho- 
mogeneous in s ¢ of degree (m - k). The sign ~ denotes equivalent modulo infinitely 

smoothing operators. The symbol of the composition of two 9"DOs P1 and P2 is given 
by the 'Leibniz rule' 

1 O,~p~ 0~o. & (4.7) crPt°e2(x,~) ,~ ~ ( - i ) M  ~ .  t ( , -  

I,~l---0 

with a!  = eel!.. "an[. The last fact that we have to state here, is that there exists a 

unique trace (with certain properties) on the algebra of 9rDOs, called the Wodzicki 

residue [ 18]. For a ~FDO P, acting on sections of a vector bundle $ over a compact 

Riemannian manifold M, this is defined by 

F(n /2 )  f tr(o.p_,(x,~:) ) (4.8) Res(P)  := 2¢rn/--------- T 
S*M 

with S*M = {(x , s  ¢) E T*M I I1¢112 = 1} the cosphere bundle on M and ~re_n(x,~ :) is 
the symbol of order - n  = - dim M not necessarily the principal symbol, The coefficient 
in front of the integral is the normalization 2 of the volume of S n-l .  Now we have the 

tools to discuss another version of A. Connes trace theorem [ 13] : For M a compact n 
dimensional Riemannian manifold and P a qtDO of order - n  acting on sections of a 

(complex) vector bundle $ on M the following relation holds: 

TR,o(P) = R e s ( P ) .  (4.9) 

Moreover Res(P)  only depends on the conformal class of the metric. 
For a proof we also refer to Ref. [ 15]. In an important work [ 18] M. Wodzicki has 

shown, that the residue is the unique extension of the Dixmier trace to q~DOs which 
are not in £O,°~) (FL , (M,E) ) .  We will use this fact in the following theorem, which 
is the main result of our article, where the relevant qrDO is not of order - dim M. 

Theorem 1. For M a compact n dimensional (n >_ 4, even) Riemannian manifold and 
a generalized Laplacian acting on sections of a (complex) vector bundle E on M the 

following relation holds: 

2 Other authors may use different normalizations. 
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Res(z~ -n/2+l) = l ( n -  1) fd"xv  
M 

(4.10) 

where on the right-hand side ~ l  ( x, x, ,~) = ~ R - F is the diagonal part of the second 
coefficient of the heat kernel expansion of A. 

Remark 2. One important observation (see M. Wodzicki [ 18, Prop. 7.11 and Remark 
7.13] is that fs,-~ d¢dnx x/g tr(°'e--~(x,~:)) is a scalar density, even though symbols 
which are not principal symbols are in general not covariant geometric quantities. 

Proof The proof will be established in three steps: 
/i-./2+l 

(i) Calculation of 0--n (x,s ¢) by a parametric construction. 
(ii) Integration over the cosphere bundle (using normal coordinates). 

(iii) Converting the result into geometric quantities. 

(i) Let o-a(x, s c) := 0- 2 -[- o" 1 + 0-0 with 0-2 proportional to idEnd(e) =: 1. Introduce a 
new qzDO P by o 'e (x , ( )  = o-?_2 := (0-2) -1. According to the composition rule (4.7) 
we have 

oo 1 ~a 3~a -I 
0-aoe-I ,.~ Z ( _ i ) I , ~ I  ~ a¢0- O'x0- 2 - -  1 

I,,1=o 
2 k 

1 
= Z Z (-i)I~'I 7. eg' lol+2- ex'0-; 

k=l I,,I--O 

:= - r ( x , ~ ) .  (4.11) 

With the notation 0-P' o0- P2 := 0-P'°P~ relation (4.11) leads to 0-ao(0-eo(1-r)  - I )  ~ 1. 
Using the geometric series in symbol-space (this can be done because r is of order -1  ) 
one obtains 

~r3-'(x, sC) ~ 0-~-1 o Z r o k  " (4.12) 
k=O 

We begin to compute 

k 
1 a a --1 

r-k(X,~)  = Z ( - - i ) I ~ I  ~.I a¢0-tal+2-k tgxO'2 ' 

I<--o 

r-1 (x,~:) = -0-~-ltr] - i0-2 2 a(.tr2 a : t r2  , 

r - 2 ( x , ~ : )  = - -0"210"0  --  o r 2 2 ( i a ( u 0 - 1  axe0-2 -[- 1 a(ua~vo.  2 axe, axe0.2) 

q - 0 - 2 3  as~ tg~: o- 2 C~xuO- 2 Cgx, Or 2 , 

r_k(X,()  = 0  V k > 2 .  (4.13) 

Again by relation (4.7) we further have 
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oo oo 

r °k = ~ s _ j  with so = 1, s-1 = r - l ,  s-2 = r21 + r -2  . . . . .  
k=O j=O 

From this we can read off  the symbol of  ,~-i : 

( x , e )  ~ 0. _1 
1=2 

with 

~- I  
O "  l ( X , ~ : ) - -  

W e  will only need 

zj-t  
0---2 (X ,~ )  = 

0---4 ( X , ~ : )  = 

More generally we 

1-2 
1 0or 0 -_  I ~_, ( -  i)l~'l V. e 2 o~sl~l+2-l. 

I,~l=0 

the first three non-vanishing terms: 

0-2 I 0 . - 3  ( X , ~ : ) = ° ' 2 1 r - 1  , 

0-~-1 (rz__l + r -2 )  + i0"2 -2 0~.0"2 Ox~r-1 . 

get 

z~--m+l ~ - -  

o.a-" (x,  ~:) ... 0- o 0 . a '  

oo 1 O~0.a  - '+ l  o 4  a -1 oo . 

,~ ~ ( _  i)DI ~.1 - ax 0. := ~ °'a-/" ' 
[a[--O l=2m 

with 

l-2m 2+l--[ot l-2m 
a-" 1 Oa0.a-.+, ~ a- '  0 . - '  (x'sC)= E ~ (-i)M ~-~.v ~ I~l+k-' °x0.-k " 

i,~l---o k=2 

/~ -- m 0 -2  #Z Using this and 0"_2., =_ we get the recursion relations 

2 4-L,~I 
•--,,/2+1 1 Ot /~--1/2+2 ~ a O  /~--I 

0-_. (x,~) = ~ E (_i)M ~. O(0-M+k_ n x -k  

I,~1---0 k=2 
~--,,/2+2 -- z]--n/2+2 z ~ - - I  z]--n/2+2 3--1 

---- 0-2--n 0.  2 1 .q._ 0.3--n 0.--3 "~- 0.4--n 0.--4 

zl -'/2+2 a - - n / 2 + 2  /i -'/2+2 
- i  C9(u0.3_ n 0x,~0.21 -- i a~ u 2 Ox, O'_ 3 

1 .~ a _ - - n / 2 + 2  Ox~Ox~0---12 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

and again with relation (4.18) 

/~ --,,/2+2 ~--,,/2+3 0 - 2 n / 2 + 3  ~--1 0-3-n (X, ~)  = 0"5_ n 0-21 + 0--3 -- ic7(u0-2 n/2+3 C9x~'0"21 (4.20) 

Now we could proceed in calculating Res( / i  - ' /2+1) in an arbitrary coordinate system, 
by solving the recursion formulas, but some terms would then become rather clumsy, 
so it is more convenient to pass to Riemannian normal coordinates at this stage. 



W. Kalau, M. Walze/Journal of  Geometry and Physics 16 (1995) 327-344 337 

(ii) The Taylor expansion of the function g~'~ in Riemannian normal coordinates X 
around a point x0 up to order X 3 reads : 

gU~(X) = 6 m" - ½ R#p~'a(xo) X P X  a + O ( X  3) . (4.21) 

From now on we will calculate everything with respect to these coordinates: 

- - 2 0-~-28p,~ R~, f ,~  G &  r - l ( xo , s  ¢) = -0"2 I 0-1 , r-2(x0, s ¢) = -0-2 10"o+ ~ 

d - '  , ~-~ 
0"-2 (xo,~:) = °'21 0"-3 (xo,( )  =-0"220"1 , (4.22) 

0"--4 (Xo'()  = - - 0 " 2 2 0 " 0 + 0 " 2 3  (¢12 --  2iSaU cgxo°'l ( u  + z-a°'r3~ R p ," & ( v )  • 

With this we can easily solve the recursion relation (4.20) 

d-,,/2+2 ~-,,/2+3 _ or2n/2+3 zi-t 
0"3_" (X0,  ~ )  = 0"5_ n 0"2 I + 0"_ 3 

/i -"/2+2 ~ J- x 0" -n /2+2  r _  1 0"3-,  t x o , ¢ )  = ( ½ n -  2) . (4.23) 

Inserting Eq. (4.23) in relation (4.19) yields 

A--./2 F 1 /~--,,/2+2 __ --- 
0"_n (Xo,  ~:) -- 0-2_ n 0"21+(½n--1)o'2"/2+2o"~_4'+(½n-2)0"2"/20"o 

/i-"/2~t f - n / 2 + 2  ~-1 ) 
0"- ,  ( x o , ( ) = ~ ( n - 2 ) ~ n ° ' 2  0--4 + ( n - 4 )  0"2"/2o-0_ . (4.24) 

With the help of the following identity: 

f 2 ~r ~/2 
dlj A ~ ~u l~  - n F ( n / 2 )  g ~  A ~  ' (4.25) 

S"- I 

and using the explicit symbol 0"a = gU~ (~:~ + i BU~:. + C (see Eq. (4.4)) we get 

f ~-~ 2 ~r ~/2 
d~: o ' _  4 ( x 0 , ~ : )  - ( ½ n  - 1 ) !  

s " -  i 

( 4 1  I B u B U ) )  (4.26) x - c +  n(-~R+ ½a~B~lx=o- ~ 

and therefore 

S j~. ,i-,,/2+, 2 "/r n/2 
a¢ 0-_, (xo, ~) = ( ½n - 2) ! 

S"- I 

1 B u B U  ) . (4.27) × (~ R -  c + ½ ax~n'~lx=0 - 

(iii) Comparison of Eq. (4.4) with Eq. (4.5), together with the definition V~ := 
au + ~ u  leads to 

B u = ~,P~FU _ 2 g U ~ , , ,  o --p~, 

C= -gU~'(ougl~ - F ~ p  + 1 ~ , ~ )  + F .  (4.28) 



338 W. Kalau, M. Walze/Journal of Geometry and Physics 16 (1995) 327-344 

Passing to normal coordinates we find 

F ( x o )  = C - ½0zB~lx=o + ¼B~B ~ , 

and so we finally arrive at 

f z~_,,12+ 1 ds c o '_ ,  (x0, s c) = 

S n - 1 

(4.29) 

2 rr n/2 
(4.30) 

However, as already mentioned above in the remark, the left-hand side of this equation 

is a scalar density and therefore, because the right-hand side is a covariant quantity, Eq. 
(4.30) holds in any system of local coordinates. [] 

With this theorem we now have a tool to construct gravity actions just by choosing 

a Dirac operator D, squaring it and reading off F ( D  2) . This will be the topic of the 

next section. 

5. Dirac operators and gravity actions 

In this section we will consider three different types of Dirac operators and the gravity 
actions associated to them via the main theorem of Section 4. For gravity actions on 
manifolds satisfying the same hypotheses as in the theorem we take 

'GR:= r (n- -2  1~ Res(D -n+2) = f a n x v / ~  ( - ~ R + ~ t r ( F ) )  , (5.1) 

M 

with r the rank of the involved vector bundle g and R the scalar curvature of M. By 

a Dirac operator D we understand an odd first-order elliptic differential operator acting 

on sections of a Zz-graded vector bundle g = 8 + @ C -  

D : F ( M , S  ± )  ---, r ( M , g : r - ) ,  (5.2) 

such that D 2 is a generalized Laplacian. For these vector bundles we take Clifford 

modules over an even-dimensional Riemannian manifold M. Such a Clifford module is 

a Z2-graded bundle g on M with a graded action ('Clifford-action') of the Clifford 

bundle C12(M) =C/2 + @ C £ -  on it: 

C £ + .  g:t: C ga: , C £ -  • g +  C g ~  . (5.3) 

With this data the Dirac-K-cycle reads (.,4, 7-(, D )  - ( C ~  ( M ) , F L2 ( M,  g ) , D ) .  Prob- 
ably the easiest example of this setting is the Dirac operator D = d + d* (called 
the signature operator if dim M is divisible by four) acting on the exterior bundle 
A T * M ,  here considered as a Clifford module. To this Dirac operator corresponds the 
Laplace-Beltrami operator zl = D 2 = d d *  + d ' d ,  which is the canonical Laplacian 
associated to A T * M  with F = 0. For this operator the action is easily calculated to be 

I e dnx ,-- IGR = --~ JM ~/g R. Another quite important Clifford module is the spinor bundle 
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over a spin manifold. This is the relevant example if one wants to have fermions in the 

respective physical model. Actually it is known, that for an even-dimensional Rieman- 

nian spin manifold any Clifford module is a twisted bundle £ = )4; ® S ,  where )4; is 
a bundle on which the C/:-action is trivial and S is the spinor bundle. Before going to 
explicit examples we should mention our conventions for the representation matrices ?/~ 
of the Euclidean Clifford algebra: 

{ y a , y b } = _ 2 b ~ b l ,  [ya,yb] =2Tab, t ry  a = 0 ~ t r T  a b = 0 .  (5.4) 

Further we should remark, that the coordinate base {T~(x)} can as usual be converted 
via the vielbeins e~(x) to an orthonormal basis {y a} by yu = e ~ y  a. 

5.1. Dirac operator of a Clifford connection 

Let ~7 e be a Clifford connection on a Clifford module ~ over a compact n (n as 

above) dimensional Riemannian manifold M. Such a connection is defined (with respect 

to local coordinates) by the relation 

[ V ~ , T  ~ ] = -~ ,"  r ~p~< , (5.5) 

so that in the most general case 17~, may explicitly be written as 

£ 
Vt. ̀ := aJ~, + A u , (5.6) 

with ¢o~, := 3~, - ¼ wt,aby ̀'b the Levi-Civita spin connection and A~, = A~,. 1. The 

corresponding Dirac operator D v  associated to ~7 e reads 

DV = T ~ ~Te u = "va?-/'t ~TE . _a _ ~ .  ( 5 . 7 )  

With the help of the identity 

T~. [~ou,a,~ ] = l R (5.8)  

and (5.4), (5.5), we get for D~7 the Lichnerowicz formula 

D~ -- ~ ~," V~,~,~ V~) 

= -~' {~,~, ~,~} V,,V~E c + ~,~ [V~,~,q V~E + ½ T ~  Iv~,v~]~ E 

= - g ~ V u V ~ -  F u p V ~ + 2 ~  [Vu ,  V~]  

£ $ 6 = - g ~ "  ( v , ~ v ~  - f l y  0) + ½ ~,,'" [, , ,~,,o.] + ~,,'" a,.A~ 

= A v + ¼ R +  F e/s , (5.9) 

with d v the Laplacian associated to ~7 e and Fe/S= yu"O~,A~ the so-called twisting 
curvature (see also Ref. [ 17] ). So we identify for our first example F = ¼R + F e/s 
and the resulting gravity action (see (5.1)) reads 

'S ( ) S IGR = r dnx ~ t r  I R _ i R _ F  CIs = ~  dnxx /gR"  (5.10) 

M M 
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We recognize that this action is proportional to the usual Einstein-Hilbert action and the 

A#-part, i.e. the gauge field, drops out completely. Actually any connection associated 
to an additional internal symmetry does not contribute to the action because the relevant 

terms are of the same type as the ones for the twisting curvature and the respective 
traces factorize. 

5.2. Dirac operator with torsion 

Let now D~, be the Dirac operator defined by the same data as in the first example 
plus an additional torsion term, i.e. 

~ £  E Vt ' := $ r  + T~ , (5.11) 

1 c ~/ab with T u := i t#ab yab = ~ e~ tcab and tcab totally antisymmetric. A calculation 
analogous to the one above shows 

2 - g  ~ e  ~ g  ~ g  - g  ~ g  V.] = [V~ , ,  

+ Tp) + 6 T u V ~  e T ,T~)  =-g."~v.V.-r.~(V, + [V~,,T.] +5 

+ 2 z  2 ~, • (5.12) 

By introducing the connection ~re u := ~7~ + 3 T~ and using (5.8) this may be rewritten 

as 

2 =  A ~r F £/s ( [ ' ~ 7 ~ , T u ] -  Tp + 2T~,T~) D, +¼R+ 
1 T ~ , T ~ ]  . (5.13) + y~ [ V~ + 

In this case we find 

t r (F)  = t r ( ¼  R + F g/s + 2g~([~7~e, T~] - r ~ , r p  + 2r r ) 

= ¼ r R + t r ( 4 g ~ T . T ~ + ½ y " " [ T ~ , T . I + r " " [ c % , T . ] )  . (5.14) 

Using the torsion constraints for the Levi-Civita spin connection ¢o~ one can easily 
show, that y~'[¢o~, T~] is a boundary term, which does not contribute to the action. 
For the action we thus get 

tabc • (5.15) 

M 

The remaining torsion terms also drop out by their equations of motion and we get the 
same result as in the first example. From the derivation it is clear, that this would also 
hold if we would start with a connection which is only compatible with the metric, since 
the functional Res singles out the Levi-Civita spin connection. 
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5.3. Dirac operator for 'product K-cycles' 

As a special case for a product K-cycle we shall now consider the generalized Dirac 
operator associated to a 'non-commutative two-point space'. Such spaces where used for 
a derivation of models of the electroweak interactions in non-commutative geometry (see 
Ref. [2] for example). A similar setting in the context of gravity was studied in Ref. 
[9]. Such a two-point space is there given by a four dimensional compact Riemannian 
spin manifold N, where N is supposed to be also a principal-G-bundle (here G = Z2) 
zr : N ~ M, over a manifold M. Now the relevant Clifford module on which the Dirac 
operator acts is £ = 7r.S a bundle over M with fiber Sy = ~)~r(x)=y Sx and Sx the fiber 
of the spinor bundle at x E N. In this case the Z2-equivariant Dirac operator and its 
square have the form 

(5.16) 

with y5 := 1 E~bcd yaybycya. From this and with the knowledge of the preceding 

examples we can read off the resulting gravity action (with the torsion T already 
eliminated by its equations of motion): 

t~R = / d4 X v~ ( ~ R + 4~2 ) . 
M 

(5.17) 

Until now we did not say anything about the nature of ~b. In Ref. [9] the derivation of 
a gravity action led to a kinetic term for ~b, i.e. q~ is a scalar field. However, in our case 

there is no kinetic term for ~b and therefore we interpret the ~b z term as a cosmological 
constant. Thus our result is different from that obtained in Ref. [9]. However, the 
authors of Ref. [9] followed a different philosophy, which involves the generalized de 
Rham algebra 12o.A whereas in our approach only the Dirac operator of a K-cycle is 
used to derive a gravity action. 

Now we will show that this result remains true for product K-cycles over algebras 
.,4 which are a tensor product of the algebra of functions C~(M)  on M and a finite 
dimensional unital matrix algebra ,AMat which in general is a direct sum of matrix 
algebras. The number of terms in this sum corresponds to the number of points of the 
discrete geometry. The K-cycle over C°°(M) is given by (D,7-/l), where D denotes 
the usual Dirac operator and 7-/1 is the Hilbert-space of square-integrable spin-sections. 
The second K-cycle, the K-cycle over -AMat, is the tuple (A4,~2) ,  where 7"/2 is a finite 
dimensional representation space of ,aMat, i.e..AMat C End(~2) .  The Dirac operator for 
this finite dimensional algebra is given by M c End(7-/2) with [ 19] 

tr( .Ma) = O, Va E .A. (5.18) 

The product K-cycle [1] over the product algebra .4 is the tuple (D, 7-/) with 
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~-~ ----- '~1  ~ 7-/2 

D = D ® l + y 5  ® A 4 .  (5.19) 

One of the main ideas in Ref. [9] was that the geometry of discrete space may depend 
on points of the manifold M. This means in our case that we allow for a space dependent 

A4. Formally the Dirac operator D is now a first-order differential operator on 7-( ~ = 

F(M,  E), where E is a Clifford module with typical fiber S ® ~2, S denotes the spinor 
space. The next step is to take the square of 79 and we get 

792 = D E ® 1 + 1 ®.A42 + y5 ® [~ ,A4] ,  (5.20) 

which again is a generalized Laplacian such that we can apply the theorem of Section 
4. Taking into account condition (5.18) the gravity action for this system is given by 

I~R = d4xx/~ R +  ~ t r ( A 4 2 )  . (5.21) 

M 

We note that also in this more general 'n-point' case there is no kinetic term for fields 

contained in the matrix derivative. The reason is that derivatives of A4, which could 
lead to a kinetic term in the Lagrangian, appear only in the third term of Eq. (5.20) 

and therefore cannot contribute to the Lagrangian because of Eq. (5.18). As for the 
two-point case we interpret the term tr(.A42) in Eq. (5.21) as a cosmological constant. 

Another consequence of the vanishing of the kinetic term for A4 is that the product 

K-cycle (5.19) is sufficient to describe gravity for continuous space-time x discrete 

space. 

6. Conclusions 

As described in the introduction and in accordance with several ideas expressed by 
A. Connes we have explicitly shown how an action for gravity can be obtained in the 

framework of non-commutative geometry via the Wodzicki residue. In particular, we 
proved that Res(D -n+2) picks out the second coefficient of the heat kernel expansion 

of D 2, where D is a Dirac operator on an n dimensional compact Riemannian manifold 
with n > 4 and n even. In this article we applied our result to a conventional geometric 
set up, where we could check that this procedure leads to usual gravity, i.e. it leads to 
the Einstein-Hilbert action. We also considered an extension of commutative geometry 
to non-commutative geometry given by the tensor product of the algebra of smooth 
functions on a manifold and an finite dimensional matrix algebra. In this case we 
obtained gravity with a cosmological constant. 

A natural further question is how to couple Yang-Mills fields to gravity. As we 
have seen, a Yang-Mills connection which can be part of the Dirac operator does not 
contribute to the Wodzicki residue that leads to an action of gravity. A solution to this 
problem is given by adding the Yang-Mills action given by Eq. (3.5) to the gravity 
action Eq. (5.1). 



w. Kalau, M. Wake~Journal of Geometry and Physics 16 (1995) 327-344 343 

However, there are some l imitat ions to our  approach. The first, common  to all mod-  

els in non-commuta t ive  geometry which use Dixmier  trace or Wodzicki  residue, is the 

fact that so far we can only  describe R iemann ian  geometry but not  pseudo-Riemannian  

space- t ime.  Fur thermore  we have proved the theorem in Section 4 only  in even d imen-  

sions. We hope to come back to these problems in a future publicat ion.  

Note: A n  independent  calculat ion o f  the Wodzicki residue in 4 d imensions ,  leading 

to the same result,  was s imul taneously  done by D. Kastler [ 14]. 
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